• By Sara Tiner

Beyond stem cells, regenerative medicine finds exosomes

July 22, 2021
a young white woman researcher in a regnerative medicine laboratory with monitors in background

Exosomes, a new tool in regenerative research, have implications for cardiac and tendon regeneration, wound healing, and incontinence, as well as many other applications.

_______________________________

In the 60 or so years since stem cells were first defined, they've become heralds of a new type of medicine, one that promises to harness the body's healing properties. Stem cells are a sort of cellular blank slate and can be engineered to form any cell in the body. Ones collected from adults can only grow into certain types of tissue or be maintained in a stemlike state.

While a vast storehouse of knowledge on stem cells exists, clinical indications remain elusive. Stem cells are expensive, difficult to transport, and stem cell therapy results are unpredictable. So instead of investigating the actual cell, Mayo researchers are investigating how the cells do their work. Assembled from the Mayo Clinic Van Cleve Cardiac Regenerative Medicine Program, clinicians, and Mayo's business development group, the team is using a new substance linked to stem cells called exosomes, and bringing it to the health care marketWhile it's not yet known if this product benefits patients, it's a great time to see how a research idea translates into a potential cure.

Stem Cells to Heal the Heart

Atta Behfar, M.D., Ph.D., is a Mayo Clinic cardiologist. As a graduate student at Mayo in the 1990s, he started one of the first stem cell projects in the lab of Andre Terzic, M.D., Ph.D., the Marriott Family Professor of Cardiovascular Research, and the Marriott Family Director, Comprehensive Cardiac Regenerative Medicine for the Center for Regenerative Medicine. The lab was investigating how to use stem cells to regenerate heart muscle after the damage caused by a heart attack.

"In the early 2000s and even up to 2010, our main focus was to take stem cells and maximize their regenerative power," explains Dr. Behfar. They used a type of cell known as mesenchymal stem cells. These cells are collected from the bone marrow or fat. The team manipulated the mesenchymal stem cells to create a heart regeneration cell, called cardiopoietic stem cells, and studied this cell through preclinical and human clinical trials.

"We did a small phase 2 and a large phase 3 trial with the cardiopoietic stem cells, and we saw benefit in patients but not uniform benefit," says Dr. Behfar. Some patients showed marked improvement, while others showed no change at all. In studying the difference between the participants, the team examined every factor, including the stem cells given to each participant.

Read the rest of the article on Discovery's Edge.

____________________________________

Other Mayo Clinic medical research websites: