
Researchers from Massachusetts Institute of Technology and Mayo Clinic announce news of a proof-of-concept patch for surgical and emergency situations where stitches or staples would normally be used. Published in the journal Advanced Materials, the patch brings together three technological innovations into what may be a better way to close surgical incisions or tissue damage inside the body.
As inspiration, the scientists took a trick from one of the world’s clingiest creatures — barnacles. Any tide pooler who has tried to pry a barnacle off a seaside rock can tell you: Don’t bother. Whether on a rocky shore, a whale or a ship, barnacles stay put despite tide and time. At the other end of the spectrum, who hasn’t experienced the frustration of washing and covering a small cut, only to have the sticky bandage immediately fail, sliding off if the area isn’t entirely dry? There’s a reason why stitches or staples are used in surgery where blood and bodily fluids abound. Christoph Nabzdyk, M.D., a Mayo Clinic anesthesiologist and critical care specialist, explains that even so, stitches and staples are to some degree antiquated technologies.
“You have tissue trauma from surgery or due to other insults, and you create more trauma using stitches or staples to approximate the tissue edges,” says Dr. Nabzdyk. “It has been the standard of care, but you’re effectively poking new holes and causing more damage. And it can be difficult if there’s tissue weakness or partial breakdown of tissues, or simply difficult to physically get to. A lot of patients have comorbidities that render them susceptible for impaired healing. So it would be nice to have a device that you can apply without added trauma and have some redundancy if one stitch fails in a suture line.”
Translating Barnacle Glue to a Surgical Patch
To avoid creating new holes and more trauma, in some cases surgeons can use surgical patching or technologies such as surgical glue. These are not new concepts, but it’s an arena that Dr. Nabzdyk and his colleagues in the lab of Professor Xuanhe Zhao, Ph.D., at Massachusetts Institute of Technology knew could use improvement. In a manuscript posted in December 2020, Dr. Nabzdyk and colleagues, describe how current products tend to be slow to adhere, weak in their ability to bond to tissue, too stiff for some tissues, or unable to be removed without damage to the skin underneath.
Read the rest of the article on Discovery's Edge.
____________________________________________
Other Mayo Clinic medical research websites:
Please do not share the story titled: Mayo Clinic Minute: What Black men need to know about prostate cancer, dated September 19, 2023. The video in ...
DEAR MAYO CLINIC: A friend has a family history of diabetes and obesity. She is diligent about eating healthfully and enjoys sharing new recipes and ...
At-home COVID-19 tests allow you to collect your sample and detect active COVID-19 infections. But what if you have at-home COVID-19 tests nearing expiration or expired ...